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The merging of orbit-averaged particle code techniques with recently developed implicit 
methods to perform numerically stable and accurate particle simulations are reported. 
Implicitness and orbit averaging can extend the applicability of particle codes to the 
simulation of long time-scale plasma physics phenomena by relaxing time-step and statistical 
constraints. Difference equations for an electrostatic model are presented, and analyses of the 
numerical stability of each scheme are given. Simulation examples are presented for a one- 
dimensional electrostatic model. Schemes are constructed that are stable at large-time step, 
require fewer particles, and, hence, reduce inputoutput and memory requirements. Orbit 
averaging, however, in the unmagnetized electrostatic models tested so far is not as successful 
as in cases where there is a magnetic field. Methods are suggested in which orbit averaging 
should achieve more significant improvements in code efficiency. 

1. INTRODUCTION 

Significant progress has recently been achieved in extending the applicability of 
particle codes to the study of long time-scale plasma physics phenomena [l-5]. 
Particle simulation has long been a reliable and versatile tool for studying plasma 
kinetic phenomena. Numerical stability of conventional particle codes, however, had 
previously required temporal resolution of high-frequency normal modes. For 
example, the integration time step AZ had to satisfy w,,~ At < 2 (where mpe is the 
electron plasma frequency) or satisfy a Courant condition (i.e., Ax/At must be greater 
than the wave phase velocity). In laboratory and naturally occurring plasmas, the 
global dynamical time scales of most interest, e.g., those on which particle and energy 
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transport or low-frequency instabilities occur, are often many orders of magnitude 
longer than those associated with the highest-frequency normal modes. Therefore, 
application of particle simulation to the study of such plasmas is severely limited. 
The inventions described in [l-5] greatly relax conventional time-step constraints 
and generally allow use of much larger time steps. 

There are major differences in the philosophy and mechanics of the various 
techniques presented in [l-5]. A few general comments are given here in this 
introduction with a more detailed critique furnished in the body of the paper. 

In [ 11, an orbit-averaged particle code was presented. This scheme introduced a 
short time scale, on which particle trajectories were accurately integrated and the 
plasma currents were accumulated on a spatial grid. On a much longer time scale, 
plasma currents were time-averaged, and Maxwell’s equations were solved in a 
magneto-inductive approximation using an explicit predictor+orrector scheme. With 
the introduction of numerical filtering and damping, stable and well-behaved 
simulations were performed. The two principal gains of this method were (1) the 
relaxation of the Courant condition associated with Alfven wave propagation, and 
(2) the reduction of the simulation particles required for an adequate description of 
the phase-space distribution function and a tolerable level of fluctuations. These gains 
in computational leverage have allowed realistic two-dimensional simulation of 
mirror-machine buildup and confinement spanning five orders of magnitude in time 
scales going from the ion-cyclotron period to the neutral-beam, charge-exchange 
replacement time and ion-electron slowing-down time [ 11. 

In the other computational approaches described in 12-51, the field equations and 
plasma equations of motion have been differenced and solved implicitly. Moment 
equations describing conservation of mass and momentum are introduced in the 
schemes given in [2-4] as intermediaries between the particle equations of motion 
and Maxwell’s equations; the latter require the plasma number and current densities n 
and J as sources for the fields. Because of the presence of the electric field in the 
momentum conservation law, the fluid equations provide prescriptions for n and J, 
whose implicit dependence on the electric field is both linear and easily exhibited. 
Coupling of the moment equations to the particles is maintained by using particle 
data for the kinetic stress tensor and for the explicit values of IZ and J needed from 
previous time levels. 

Reference [5] offers a qualitatively different and more direct implicit scheme in 
which the trajectory of the particles are Taylor-series expanded to exhibit their depen- 
dence on the acceleration and, hence, on the electric and magnetic fields seen along 
their paths. The resulting modifications to n and J are assumed small compared to 
their corresponding free-streaming values, thus allowing linearization of the depen- 
dence of n and J on the fields. Solution for the fields is then obtained by inversion of 
a sparsely banded matrix. These implicit schemes relax stability constraints on time 
step set by waves. 

Time-step constraints required for stable and accurate integration of the particle 
trajectories in both orbit averaging and implicit methods remain. In particular, it is 
required in the unmagnetized implicit electrostatic models that ] k,,, v dt] < 1 and 
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Ik msxa At2 1 < 1, where k,,, is the maximum spatial wavenumber retained, At is the 
time step, and u and a are the particle velocity and acceleration. These constraint 
conditions can still influence the practicality of simulating very slowly evolving 
collective plasma phenomena, and simulations with realistic parameters using these 
implicit methods on the most advanced computers may still be too expensive. 

Because the product of the number of particles with the number of time steps 
usually governs the total cost of a simulation, orbit averaging is attractive. When 
successful, orbit averaging can achieve a large reduction in the requisite number of 
simulation particles and allows (depends on) time splitting of different modules in the 
simulation algorithm to more efficiently track phenomena with disparate time scales. 
The reduction in particles results from sampling the contributions of a single particle 
to n and J at many discrete positions along its phase-space trajectory and then time 
averaging these contributions before solving Maxwell’s equations for the new self- 
consistent fields. In a sense, the many discrete phase-space positions of the single 
particle used in the averaging are equivalent to many more discrete particles. This has 
been exploited to great advantage in earlier steady-state simulations [6] and in time- 
dependent, orbit-averaged simulations [ 11. 

This paper examines the merging of orbit averaging with the recently developed 
implicit particle-code methods. We wish to combine the robust stability charac- 
teristics of the implicit methods with the savings in particle number that may be 
possible with orbit averaging. By means of analytical derivation of simple dispersion 
relations describing the numerical stability of various time-differencing schemes and 
with a few corroborating simulation examples, we demonstrate how orbit averaging 
can be combined with the moment-equation, field-implicit method [2-4] or the direct- 
particle and field-implicit scheme [5] to give stable algorithms at large time step. We 
also prove that simple orbit averaging, which is explicit and iterative, leads to an 
unstable electrostatic algorithm but can be used to give a stable magneto-inductive 
code (see companion paper [ 71). 

We emphasize that there is enormous room for invention in synthesizing 
differencing schemes for implicit and orbit-averaged simulation algorithms. Although 
we offer a few guiding principles that should improve the likelihood of achieving 
numerical stability at large time step, the numerical stability, filtering, and accuracy 
characteristics of each class of schemes should be determined on a case-by-case basis. 
Our most important conclusion is that successful orbit averaging requires a distinct 
separation of time scales between the particle trajectory time scale and a longer time 
scale for the evolution of the average distribution function and the electromagnetic 
fields. 

The remainder of the paper is organized as follows. In Section 2, we shall present 
the design and analysis of a number of different orbit-averaged and implicit 
differencing schemes. We specialize our considerations to simple one-dimensional 
electrostatic models with no externally applied magnetic field. Simulation results 
obtained with the one-dimensional electrostatic code ES1 [S] are described in 
Section 3. A discussion and summary are given in Section 4. 
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2. DESIGN AND ANALYSIS OF ORBIT-AVERAGED AND 
IMPLICIT PARTICLE CODES 

In this section we shall introduce a number of model differencing schemes for elec- 
trostatic physics models and analyze their numerical stability characteristics by 
deriving the cold plasma dispersion relation for each. This is closely akin to the 
simple harmonic oscillator analysis described in [9]. The stability analysis is 
relatively simple but is new and decidedly non-trivial because of orbit averaging and 
the predictor-corrector approach; it is a highly reliable tool that has guided our 
design of new algorithms and has assisted us in understanding the numerical 
instability or damping characteristics of our simulations. 

2.1. Stability 

The very simplest simulation model is a one-dimensional electrostatic model with 
no magnetic field. This model has been extended to the large time step (mpe At $ 1) in 
[2, 3, 51 by implementing an implicit solution of Poisson’s equation relating the 
electric field to the induced charge density in the plasma. Motivated by the success of 
the scheme reported in [I], we begin with an analysis of an explicit predictor- 
corrector, orbit-averaged electrostatic model. This algorithm is unstable but can be 
stabilized with the introduction of sufficient implicitness. 

A simple, orbit-averaged electrostatic model is given by the difference equations 

Pd2w+ l + EM) = 47Lq((n)“+ “2 - n,), 

,j+l -gxj,J+f’/2At, 

uj+ ‘12 - v’- ‘12 = (q/m) E” At, 

(1) 

(7-j 

(3) 

where D, is the spatial derivative operator; E is the electric field known only at 
macro-time levels denoted by M and M + 1; x and u are particle positions and 
velocities known at small or micro-time levels denoted by j; (n) is the orbit-averaged 
charge density 

(n> (4) 

S(x$ - x) is the standard particle shape and interpolation factor [ 71; i is the particle 
index; O<j<N corresponding to MAT<(t=MAT+jAt),<(M+l)AT, N= 
AT/At the ratio of macro- to micro-time step; and 

,‘j’” =EM (predictor) (54 

=aE“‘+’ + (1 -a)EM (corrector), (5b) 

which is interpolated from the grid to the particle using S(d -x). 
In Fig. 1, we present a schematic showing the separation of micro- and macro-time 

levels and the leap-frog time advance of the code variables. The particles are 
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FIG. 1. Schematic of orbit averaging in simplest one-dimensional klectrostatic model. Note that (n) 
is averaged in time over densities accumulated at each micro-time step. 

advanced first in a predictor step with Eqs. (2) and (3), and E* is given by the 
previous time-level value EM. Gauss’ law (Eq. (1)) is used with the average (n) to 
determine a predictor estimate of EM+‘, which is then used in Eq. (5b) for E*. Note 
that a is a temporal biasing parameter 0 < a < 1. The particles are returned to their 
former phase-space positions at c = A4 AT and then advanced with Eqs. (2) and (3) 
to t = (M + 1) AT again in the corrector step to determine an improved value of 
+)“+ l/2 and, hence, EM+‘. 

This explicit predictor-corrector advance of the field and particle equations is 
numerically unstable to a temporal instability. For purposes of simplifying the 
analysis, we assume a linear disturbance of a cold, uniform, non-drifting plasma and 
ignore spatial grid effects (Ax + 0). The perturbed particle velocity and position are 
given by 

vj+l/’ = v”’ + (q/m) jAtE*, 

$=x0 + v”2jAt + (q/2m)j(j- I)At’E*. 

The averaged linear density perturbation is 

(64 

(6b) 

(n) Mt l/2 -no=-& (no&v+ 1)) 
0 

a AT z:-- 
8X 

x”+lvM+ 2m qAT2 E” )I . 
We have employed the summation formulae 

,goj=N(Nf l)/% goj2 =NW+ l)W+ 1)/6, 

have assumed that N B 1, and have denoted (x”, v”) as the values of x’ and vj+ “’ 
nearest to the beginning of the macro interval. 
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With substitution of (nj”+“* - n, from Eq. (7) with E* = EM into Eq. (1) and 
Fourier analysis in space, we obtain the predicted value 

EM+‘=- (1 -qq ( EM - 8m,q x”’ + F vM ). 

E* on the corrector pass is given by substituting Eq. (8) into Eq. (5b). We then use 
Eqs. (6) and (7) to recalculate x, V, and (n) - n, and obtain 

XM+l -,p= (94 

EM - 8nn,q )I + (1 - a)EM (9b) 

Introduction of the Fourier representation, (x”, n”, EM) = ($17, I?) zM + c.c., where 
z - exp(-io AT), and algebraic reduction of Eqs. (9a)-(9c) give a dispersion 
relation. The most strongly backward-differenced (forward-biased) scheme and the 
least unstable for a < 1 corresponds to a = 1. If we define R = CIJ~ AT2, then the 
dispersion relation for a = 1 can be expressed as the cubic equation 

[(z - 1)2 + 2Rz] ,++3-2Rz(+ =0. (10) 

For R = cc; AT2 < 1, the plasma oscillation is recovered at lowest order in R, giving 
two normal modes 

(z-l)2/z=-R -+ 02=o;, (11) 

which are weakly damped at next order in wp AT. The third normal mode oscillates 
at the Nyquist frequency (w = n/AT) and is weakly unstable 

z=-1 -R/6. (12) 

For R = CIJ~ AT2 B 1, the highest power of R in Eq. (10) is R2. Setting the coef- 
ficients of R2 equal to zero gives a quadratic which has one damped and one unstable 
solution 

Z *=-2*& (13) 
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FIG. 2. Absolute value lz[= lexp(--io AT)/ as a function of w: AT* for an explicit predictor- 
corrector, orbit-averaged electrostatic algorithm. There is weak instability for WE AT* < 1 and strong 
growth for wi AT’ > 1. 

The third root of Eq. (10) is even more unstable when R s 1, for which 

z z R’/9. (14) 

In Fig. 2, we exhibit the general numerical solution of Eq. (10) for the most 
unstable normal mode. For CL$ AT* < 1, there is, indeed, weak. instability; at larger 
time steps, the algorithm is unstable for all values of a, 0 <a < 1, and the growth 
rates are large. 

All of the analyses presented in this section are directly applicable to a hybrid 
quasi-neutral electrostatic model. We adopt a Boltzmann response for the electrons, 
assuming that they are isothermal, and model the ions as particles. The quasi- 
neutrality condition is 

ni = n, = n, exp(e)/T,), 

from which follows the electric field 

E = -~~/iYx = -(?,le)@/ax) ln((n,)/n,), (15) 

where the angular bracket indicates the introduction of orbit averaging. This equation 
replaces Eq. (1). The linear ion-density perturbation is given by ni” = 4(n,,x(l))/L?x, 
5,~ which the linear electric field is determined by Eqs. (15) and (7). We assume 
the unperturbed plasma to -be uniform. The only change in the resulting linear 
dispersion relations is the replacement of wt with k2ci = kZT,/mi, which indicates 
that the normal modes are now ion-acoustic waves. 

We next consider stabilizing modifications of the electrostatic algorithm. Motivated 
by the success of implicit schemes, we replace Eq. (5) with E * = aEMt ’ + (1 - a) EM 
and suppose that the corrector iterations have converged or an actual implicit field 
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solve is performed, as in [S]. Linearizing and Fourier analyzing Eqs. (6) and (7) 
yield the dispersion relation 

(z+ l)(z- 1)2+ 
( 
q (z’ + 42 + l)(az + 1 -a) 

i 
= 0. 

The plasma oscillation is again recovered for 0; AT2 < 1; at large time step 
wt AT2 % 1, the normal modes are described by z = -(l - a)/a and z = -2 it fi. 
Thus, the electrostatic algorithm continues to be unstable at large time step. 

Stable orbit-averaged implicit electrostatic schemes do exist, however. Consider the 
following scheme that is an example of a direct-particle and field-implicit scheme [S ]. 
We replace Gauss’ law (Eq. (1)) with the equivalent relation in one dimension, 

(aE/at) + 47rJ = 0, 

and difference it as 

(EM+’ - E”)/AT + 47r(J)M + “* = 0, (17) 

where 

(J> 
Ju+1/* - -L$ ‘q~[s(x:-x)+s(~+~--x)] 

N+ l j=Oy 
(If-9 

and Eqs. (2) and (3) describe the particle motion. The averaging interval in Eq. (18) 
extends from t = MAT to t = (M + 1) AT and is centered at (M + l/2) AT. For E* in 
Eq. (3), we employ E* = aEMtl + (1 - a) EM. 

To guarantee that (J)Mt ‘I2 is implicit, we use the solutions for the particle 
trajectory obtained earlier in Eqs. (6a) and (6b), 

uj+1/2 = dij,f1/2 + f jAt aEM+‘( 

xj=d +?LjL$JA~*aEMC1(x’,), 
e 

where vje+ ‘I2 and 9; are the “explicit” parts of the velocity and position arising from 
that part of E* due to (1 - a) EM. E* has been interpolated from the grid to the 
explicit position ti:, which is known. The validity of this approximation is discussed 
in [S] and requires (q Ar*(~YE/&)/rrz( Q 1, so that the particle advance temporally 
resolves a trapping oscillation. The implicit orbit-averaged current is Taylor-series 
expanded with respect to EM” to obtain 

(J> 
M+ II2 = (J,) .hf+1/2 + (aJ/@f+')M+'/2 EM+l, (20) 

where (J,)“” ‘I2 . IS the explicit current given by Eq. (18) with Uit’12 = tiL+ I/* and 
xi = 2;. The functional derivative with respect to EM+ ’ in Eq. (20) operates on U{ + ‘I* 
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and 4 (which are defined in Eq. (19)) and is evaluated at the explicit velocity and 
position along the trajectory. The implicit dependence of (J)“‘+i’* on EM+’ has thus 
been linearized, and with the addition of a spatial grid, Eq. (17) leads to a banded- 
matrix equation whose solution is straightforward. Iterations can be performed in 
which position x’, (at which the electric field is applied) is corrected to include 
modifications due to EM+‘. 

The unconditional stability of this scheme for propagating a small-amplitude 
plasma wave in a cold, uniform, non-drifting plasma follows directly. The analysis is 
similar to the derivations already presented and is simplified by the absence of 
corrector iterations. We linearize Eqs. (6), (17), and (18) for a cold, uniform, non- 
drifting plasma and obtain 

d’+’ = uM + qATE*/m, (214 
(J)M+1/2 = n,q(v”” + q ATE*/2m), (21b) 

(EM+’ -EEM)/AT+ (o,:ATE*/2) + 4nn,,qvM =O, (21c) 

where E* = aEM+’ + (1 - a) E M. Fourier analysis and algebraic reduction of these 
equations give the dispersion relation 

\ (z - 1)2 + (w; AT2/2)(z + l)(az + 1 - a) = 0. (24 

For r$ AP 4 1, the solution of Eq. (22) is a plasma oscillation 

o*~$,[l -i(2a- l)wAT/Z)I; (234 

and for w;AT’ $ 1, 

z=(a-1)/a,-1+(8/(2a-l)wiAT*). (23b) 

All solutions are damped for a > f . 
The general solution of Eq. (22) is unconditionally stable, /z/ < 1, for a > f . This 

demonstrates that orbit-averaging can be merged with a direct-particle and lield- 
implicit scheme to give a stable algorithm at large time step, provided that sufficient 
implicitness is preserved. The failure of a direct-implicit, orbit-averaged algorithm 
based on Gauss’ law (dispersion relation given in Eq. (16)) and the conditional 
stability of Eq. (22) with respect to a illustrate that stability depends on the 
particular implicit differencing scheme being used. 

A stable algorithm can also be obtained by combining orbit averaging with the 
implicit moment equation method independently developed in [2] and [3]. In this 
algorithm, fluid equations for continuity and momentum conservation are introduced, 

M+I =nM - (AT/q) D,J”+ I/‘, 

J’+‘12 = (J)“-1’2 + (q AT/m)(-D,(P+)” + qn”‘E*), 

(24) 

(25) 

581/45/3-4 
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where (J)“-1’2 and (Pt)” are the orbit-averaged current density and kinetic stress. 
(J)M- 112 is given in Eq. (18) with the time average performed over the interval 
(M - 1) A T < t < MA T. The orbit-averaged kinetic stress is represented by 

(P+)” = (26) 

and the average is centered on the time interval (M - f) AT < t < (M t f) AT. The 
particle equations of motion, Eqs. (2) and (3) are used to advance x and V; Gauss’ 
law 

D,EMtl = 4nq(d”+ ’ - no) (27) 

determines the electric field. In Eqs. (3) and (25), we choose to represent the electric 
field as 

E* = OEM+’ + ((1 - 8)/4)(E”+’ + 2E”’ + EM-‘), (28) 

where 0 < 8 < 1. The value 8 = 0 corresponds to a centered-implicit scheme, and 
I3 = 1 is fully implicit. 

Figure 3 illustrates the time advance of the various fluid and particle quantities. 
Because a field solve is performed to obtain E M+’ before the particles are advanced 
from MAT to (M + 1) AT and this field solution requires an evaluation of (Pt)” in 
Eq. (25) that is not completely known (particle velocity and position data from h4 AT 
to (M t f) AT are not yet determined), extrapolation or prediction of (Pt) is 
necessary in Eq. (25). For example, on a field predictor pass, it is convenient to set 
(P+) equal to (P+)“-1’2 in Eq. (25). We can then calculate EM+’ and advance the 
particles from MAT to (M t 4) AT so that (Pt)” can be computed and used to 
recalculate EMfl, which is then used to advance the particles from MAT to 
(M + 1) AT. It has been the experience in the work reported in (2-41 that 
considerable liberties can be taken in the evaluation of Pt with respect to time 
centering. As initial conditions in our orbit-averaged schemes, we assume that the 
plasma is frozen for t < 0 and then set all the orbit-averaged particle data and fluid 
quantities equal to the corresponding instantaneous particle quantities at t = 0. 

The stability analysis for plasma oscillations in the orbit-averaged, moment- 
equation scheme is straightforward and closely follows the pattern of the similar 

,T----. 
“M-l, EM..’ 

b4-h AT 
. 

c- (J)M-"Z ----I 

i-- (P’F __I 

Time - 

FIG. 3. Time advance of fluid and particle variables in the orbit-averaged, implicit-moment equation 
method. 
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derivations that have already appeared in this section. The linearized, algebraically 
reduced difference equations for a cold, uniform plasma are derived directly from 
Eqs. (2), (3), (24)-(28), and (18): 

p+ 1 - vM = q AT E*/m, (294 

J”+“* = (J)“‘-“* t q2n, ATE*/m = noq(vM-’ + v”)/2 t q2n, ATE*/m, (29b) 

w M+’ = qnM -ATD, JM+‘/Z, 

D * EM+’ = 47rq(n”‘+’ - n,). 

(29~) 

(294 

There is no corrector iteration here because a linear plasma oscillation in a cold, non- 
drifting plasma has no associated kinetic stress. Use of Eq. (28), Fourier analysis of 
Eq. (29), and algebraic reduction yields the quartic dispersion relation 

z’(z - l)2 + CD; AT2(z2 - fz t $) (1-Q -(z’ t 22 t 1) = 0. 4 1 (30) 

For very small time steps (or low frequencies) LX: AT2 4 1, there are heavily 
damped solutions 

z z &(I - 0) cop AT/g, W4 

and a simple-harmonic oscillation 

o~~fw,[lfi(l-228)w,AT/4], Plb) 

which is damped if 0 > 4. For CJJ~ AT* % 1, the plasma oscillations become 
significantly damped 

z=dfifi/4, IZI = fip, W-4 

and the remaining solutions are 

z = (-1 t e * i2[0(1 - e)y2y(i t 38). WI 

which are also damped when 0 < 8 < 1, Figure 4 exhibits the absolute value of the 
amplification factor IzJ, the solution of Eq. (30), as a function of CUE AT’. We note 
that for insufficient implicitness 6’ < f , there is instability; but, curiously, the 
instability occurs at small and moderate values of wP AT and not at large oP AT. 
Setting B > f assures stability for all values of w, AT. 

The next model that we analyze is a variation of the orbit-averaged moment 
method in which we attempt to tie the fluid moments closer to their corresponding 
orbit-averaged particle quantities. In the scheme already described, the fluid and the 
particles are coupled by using the orbit-averaged particle current and kinetic stress in 
Eq. (25), by sharing the same initial data for the number density, current, and stress 
tensor, and by being advanced with the same electric field E* in Eqs. (3) and (25). 
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10-z 10-l 1 10 102 103 
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FIG. 4. Absolute value of the amplification factor /zI for electron plasma oscillations as a function 
of CO’, AT’ for the orbit-averaged, implicit moment equation method. Simulation data points are super- 
posed. 

A simple modification of Eqs. (24)-(27) that couples the fluid and particles more 
closely is the addition of a step in which the fluid density is replaced by 

rP+’ = nM -dTD,(J)M+“2/q (33) 

following the field solution in Eq. (27). This seemingly minor change in the algorithm 
has a profound effect and results in instability. It is important not to confuse the 
distinction between w”+’ calculated in Eq. (24) and used in determining EM+’ in 
Eq. (27), and n”+’ obtained in Eq. (33) and then used on the right side of Eq. (24) 
at the next macro-time step. 

Fourier analysis of the modified difference equations and algebraic reduction yields 

z3(z-1)*+W~dT2[Z*+fZ-~+f(Z-l)~] 

x [ez’ + ((1 - 8)/4)(z2 + 22 + l)] = 0. (34) 

For ui AT* & 1, there are heavily damped solutions 

z = (f, a f i &4)(w, A7’)‘13 (1 - 0)113 (35) 

and plasma oscillations 

co = fw,[ 1 f i(o, AT/4)(1 - 20)], (36) 

which are damped for 19 > f just as in Eq. (31b). For 0: AT’ 9 1, the normal modes 
are approximately described by setting the two brackets appearing in Eq. (34) 
separately equal to zero. The cubic has two solutions corresponding to unstable 
plasma oscillations, 

z = 0.3017 f i1.0815, JzI = 1.123, Pa) 
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FIG. 5. Absolute value of the amplification factor 1~1 for plasma oscillations as a function of w,, AT 
for the unstable, modified, orbit-averaged, implicit-moment equation method using Eq. (33). 0, theory: 
0, simulation. 

and a damped solution, 

z = 0.3966; Wb) 

the two solutions of the quadratic are stable for 0 < ~9 < 1, 

z=(-1 +8* i2[8(1-0)]“‘)/(1 +38). (37c) 

Figure 5 illustrates the solution of Eq. (34) for 0= 1; which corresponds to a fully 
implicit scheme. The amplification factor Jz] is less than unity, and the plasma 
oscillation is damped for o,AT < 8(l). The plasma oscillation becomes unstable at 
larger time steps. 

Another variation of Eqs. (24~(27) consists of replacing Eq. (24) with 

nMt’ = (n)” -ATD,J”“12/q. (38) 

This can be implemented by calculating (n)“’ in the same predictor-corrector 
iteration in which (I’+)” is computed. However, linear stability analysis indicates that 
violent numerical instability results for co,, AT > 1. 

Mason [9] has suggested that Eqs. (24) and (25) could be replaced by 

n M+'=(n)M--1/2-3ATD,JM+'/2/2q 

J“‘+“’ = (J)“-“2 + q AT(-D,(P+)M + qnE*)/m. 

(39) 

(40) 

This increases the implicit dependence of n”‘+’ on EM + ‘. We have analyzed the linear 
stability of Eqs. (2), (3), (27), (39), and (40) with E* in Eqs. (3) and (40) 
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FIG. 6. Absolute value of the amplification factor IzI for plasma oscillations as a function of o,, dT 
for the unstable, modified, orbit-averaged implicit-moment equation method using Eqs. (39) and (40). 
0, simulation data. 

represented by different weighted averages of EM+‘, EM, and EM-‘. We found 
instability for some range of wP dT values in every case. As an example, in Fig. 6 we 
present the absolute value of the amplification factor 1 z ( as a function of cup AT for a 
scheme in which E* in Eq. (3) was the simple average (EM + EM+ ‘)/2 and E* in 
Eq. (40) was E”+l. 

It is evidently difftcult to marry the fluid density any closer to the orbit-averaged 
particle data than is already accomplished in Eqs. (24) and (25) without 
compromising numerical stability. For the sake of numerical stability, we favor the 
use of Eqs. (24)-(27) with 0 ) 4. We next ask: 

(a) What are the accuracy properties of such an algorithm? 
(b) What discrepancies between fluid and particle quantities are expected? 

2.2. Accuracy 

We have performed a standard accuracy analysis in which the density and current 
are Taylor-series expanded with respect to temporal and spatial variation. We 
presume that all spatial derivatives are represented by the simplest centered difference 
operators and hence, are accurate through first order in Ax, with errors at second 
order. The equation for the current, Eq. (25), is centered in space but not in time. 
(P+)“’ is approximately time centered in a predictor-corrector sense; with one 
corrector pass, it is accurate up to 4(AT)‘. With a fully implicit representation of 
E*, rather than centered implicit, there is an B(d7’) error in the electric field used in 
Eq. (25). Because .TMi I/’ is only one macro-time step ahead of the orbit-averaged 
particle data (J) - M ‘12, however, the first-order error in E* is multiplied by an 
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additional AT to give a net @(AT’) error in J M+“2 With centered differencing and . 
linear interpolation, the particle equations (2) and (3) have similar accuracy 
properties and are advanced with the same E*. Thus, the discrepancy 
J.+ft1!2 _ (J)Mt1/2 is at most second order in AT and dx. Similarly, as a consequence 
of centered differencing, the discrepancy n”+’ - (n)“’ i is also at most second order 
in AT and Ax. 

If a stable algorithm could be constructed using Eq. (38), the discrepancy 
#+ I- (n)M+l would be @(AT) smaller, because nMtl is advanced only one time 
step ahead of (n)“. Whether the accuracy of the stable scheme using Eqs. (24) and 
(25) is sufficient will have to be determined in practice and may well depend on the 
pathology of the particular problem. The absolute accuracy of the orbit-averaged, 
direct-particle, and field-implicit method is generally at least as good as in the 
implicit moment method; in contrast, there are no fluid quantities introduced, and 
discrepancies between the density used in Poisson’s equation and the actual particle 
number density are of a different character [5]. 

3. SIMULATION RESULTS 

The one-dimensional electrostatic particle code ES1 [8] was used as a framework 
to test various differencing schemes. In all cases there was no magnetic field present. 
The results reported in [2-51 demonstrate the successful implementation of implicit 
time differencing in electrostatic algorithms. Our experience with orbit averaging in 
electrostatic models has been successful in a limited sense. 

As analyzed in Section 2.1, orbit averaging alone in explicit electrostatic and 
hybrid quasi-neutral schemes gave numerical instability. No amount of uncentering in 
the difference equations or additional corrector iterations achieved stability in our 
simulations, in agreement with the analysis of Section 2.1. 

The introduction of sufficient implicitness led to stable algorithms. Examples of 
schemes based on the implicit-moment method [2, 31 with insufficient implicitness 
were described in Section 2.1. Simulations of numerically unstable electron plasma 
oscillations in cold plasma were in good agreement with the relevant dispersion 
relations (see Figs. 5 and 6). Simulations using the version of the orbit-averaged 
implicit-moment method described in Eqs. (2), (3), (18), and (24~(28) gave damped 
plasma oscillations for small and large cop AT in good agreement with the solutions of 
the dispersion relation Eq. (30) and plotted in Fig. 4. For these cold plasma 
simulations of small amplitude waves, only a predictor step was used, because 
corrector iterations would have only modified the stress term (Z’+), which was unim- 
portant in these situations. 

A more substantial test of the electrostatic algorithms was the simulation of an ion 
acoustic wave. In this case the electrons were warm, and the ions were cold. The 
results of single mode simulations are shown in Figs. 7-9. The particular mode 
simulated had quite long wavelength k&,, = 0.5 X 10m2 and hence, low frequency 
~c,/cL+,~ = 10m3. The mass ratio was mJme = 25, and the other simulation parameters 
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FIG. 7. Electron and ion phase space v, vs x for a periodic ion acoustic-wave simulation at kc,l = 0 
and K with 5 12 particles of each species. The system length is L, and c, is the ion sound speed. 

FIG. 8. Orbit-averaged and fluid perturbed number densities An= ni -II, as functions of x at 
kc,t = 4x, corresponding to 3 x 10” macro-time steps with AT/At, = 20 and At, = At, for the same 
periodic ion acoustic-wave simulation shown in Fig. 7. The relative ion (or electron) density perturbation 
satisfied I(nr - n,)/n,I < 0.1. 
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FIG. 9. For the same periodic ion acoustic-wave simulation shown in Fig. 8, ion kinetic energy vs 
time, where c!?~ is the total system energy (conserved within 1%). 

were cope AT = 4, kv, AT = 0.02, AT/At = 20, At, = Ati, and Ni = N, = 5 12; there 
were 32 grid cells. One corrector iteration was performed. 

The results of the simulations clearly show an ion-acoustic standing wave with 
correct frequency (Figs. 7 and 9), nearly constant total energy after 6 X IO4 particle 
time steps (< 1% variation), and little separation of the orbit-averaged particle 
density from the fluid density (Fig. 8). Spatial smoothing was applied to the 
calculated electric field, and only the fundamental was retained. Consistent spatial 
smoothing, a problem in the implicit algorithms described here, is currently 
unresolved. Nevertheless, the small separation of the fluid and particle densities, 
especially in the mode of interest, is encouraging in view of the relatively few 
particles (5 12 of each species) used. 

An important and discouraging result of the orbit-averaged, electrostatic implicit- 
moment simulations is their observed divergence for kv, AT 2 0.1. The empirically 
determined stability is more restrictive than is imposed by the moment method with 
no orbit averaging, where kv At < 1. However, because of the artilical cooling- 
heating and general distortion of the particle orbits that accompanies use of 
kv At > a( 1) in any particle code [ 111, use of kv, AT5 0.1 in the orbit-averaged 
code may prove to be a factor at most 2 to 4 times more restrictive than that of the 
typical time step used in conventional implicit moment method simulations. In any 
case, in its present contiguration, the orbit-averaged implicit moment algorithm does 
not achieve a reduction in the total operations count over simulations with the 
conventional implicit moment method. The orbit averaging does reduce the number of 
simulation particles, however, and, hence, decreases the computer memory 
requirement. 

We emphasize that these results only apply to the particular algorithm used here 
with its explicit representation of the kinetic stress term. Better convergence 
properties and less restrictive conditions on time step should result in Eq: (25) if an 
implicit or partially implicit representation of the kinetic stress tensor is introduced 
[4, 101 and/or the orbit-averaged current (J)“-‘I* is replaced with the fluid quantity 
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J”-‘I*. Our limited success with orbit averaging in the electrostatic model has 
provided insights regarding the right conditions for successful application of orbit 
averaging, which we shall discuss in Section 4. 

We have had some success with another form of temporal averaging in an almost 
trivial variation of the implicit moment method. As conceived by Mason [2] and 
Denavit [3] the charge density, current density, and kinetic stress terms on the right 
sides of the moment equations (24) and (25) were to be obtained from the instan- 
taneous particle quantities accumulated on the spatial grid; there was no splitting of 
field-solve and particle-advance time scales. We performed temporal smoothing of the 
particle source data in the moment equations without time splitting by introducing 
simple lag averages, 

P=.rP+M+(l -a,)P-1, 
p--1/2 = a JM-l/2 + (1 _ a2)p-3/2, 

2 

iP = cf3nM + (1 - cY3) 9-l, 

where 0 < ai < 1; the barred quantities are the average values at a particular time 
level, and the remaining quantities are the respective instantaneous values. The time 
average extends backward in time, has a dissipative effect, and can be destabilizing 
depending on the values of (ai} and ccpe At. To ensure stability at large mpe, we have 
found that a, has to be set nearly equal to unity (no averaging of n), and successively 
smaller values of a2 and a, (more averaging of past J and Pt data) can be taken. This 
does not achieve dramatic reduction of the particle statistical requirement but does 
decrease statistical noise. 

4. DISCUSSION AND SUMMARY 

The foregoing analysis and simulations demonstrate that orbit averaging and 
implicit techniques can be merged to give new algorithms that are stable for large 
time steps; this is not possible with conventional explicit-particle codes. In so doing, 
however, we have also discovered numerous schemes that were numerically unstable 
either at small or large time steps. Furthermore, the electrostatic and magneto- 
inductive models have entirely different characteristics. Orbit averaging has been very 
successful in the magneto-inductive model with an applied magnetic field present but 
has been less successful in the unmagnetized electrostatic model. 

In general, orbit averaging can lead to numerical instability, unless it is combined 
with sufficient implicitness. The explicit orbit-averaged, magneto-inductive scheme 
first introduced in [l] and further described in the companion paper has peculiar 
properties and is unstable for some parameter regimes and small AT. Because it is 
highly desirable to have robustly stable algorithms that are applicable to diverse 
parameter regimes, we prefer to combine orbit averaging with implicit schemes such 
as those described in [2-51 and in this article. Therefore, we are adding orbit 
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averaging to an axisymmetric cylindrical version of an electromagnetic implicit 
moment code similar to that developed by Brackbill and Forslund [4]. 

Although we were able to construct a stable, orbit-averaged electrostatic scheme, 
such a code did not prove to be as successful an application of orbit averaging in its 
present configuration as hoped. This is due to the lack of separation of time scales 
between the time step required for stability of the field solution and the natural time 
step for the particle advance, in sharp contrast to the situation for the magneto- 
inductive algorithm. The constraint on the time step for the field solution in the elec- 
trostatic implicit moment method is approximately 

Ikv AT1 < 1 (41) 

in an unmagnetized plasma, where k is the largest wave number retained, and u is the 
larger of the thermal and mean oscillation or drift velocities [2, 31. 

The constraint condition, Eq. (41), is the inevitable consequence of the explicit 
representation of the kinetic stress term and the structure of the implicit moment 
equations. Iterations on the kinetic stress term and the electric field solution are 
coupled, and Denavit [3] has shown that the convergence condition on the iteration 
of the moment equations is given by Eq. (41). A perturbation in the kinetic stress 
JPtM is induced by changes in the particle trajectories resulting from changes in the 
electric field dEMtl. To determine the convergence of iterations, one calculates the 
ratio of the perturbations 6EMt’ on successive iterations, i.e., ] c~E~+~~‘/SE~‘+ ‘1, where 
r is the iteration index. Depending somewhat on the specific finite-difference represen- 
tation of the stress tensor and the shape of the unperturbed velocity distribution 
function, the perturbation in the r + 1 iterant of the stress tensor is given by 

SPJ$ = -iyn,mv’k At2 q(8E*/c?E”+‘) c?Ep;I+ ‘, (42) 

where y = 6(l), v is a characteristic thermal velocity, and CUE */aEM+ ’ is determined 
from Eq. (28), for example. Equation (25) relates @‘$,1/Z to dPTyl and to the 
implicit term dE,+, Mt ‘. The density perturbation &z~~~’ is determined by cV~:,“~ in 
Eq. (24). Gauss’ law, Eq. (27), closes the set of equations by relating the electric field 
and charge-density perturbations ik 6Ep;I++I’ = 47cq6n~+tl’. Finally, we obtain 

ISI= / yk2v2 AT2 w; AT2 c9E*/6’EMt1 
1 •t w; AT2 8E*/aE”+’ ’ (43) 

Using the property that 8E*/8E”+’ > 0 in all of our implicit schemes, we conclude 
that ] &!$‘~ll/GEf’t’ ) < 1 for all u$ AT2 if yk2v2 AT2 < 1; this is in basic agreement 
with Eq. (41). 

Note that Eq. (41) is essentially the same condition as that for accurate integration 
of the particle equations of motion. When we attempt to orbit average, we are forced 
to use a At for the particle advance much less than AT for the field, in which time a 
typical particle does not traverse much of its available phase-space trajectory. Orbit 
averaging was successful in the magneto-inductive case because the particles were 
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able to complete many gyro- and axial-bounce orbits over the macro-step AT between 
field solves, while being simultaneously constrained to use a micro step At fine 
enough to accurately resolve the gyration and the bouncing. In the unmagnetized 
electrostatic model, the analogue of the gyro- or axial-bounce orbit is the wavelength 
of the electric field. Thus, the inequality in Eq. (41) is just the reverse of that which 
would have allowed orbit averaging to achieve maximal improvement of code 
efficiency. 

Orbit averaging of the implicit moment algorithm with explicit pressure has not 
reduced the total number of operations in simulations with no magnetic field. 
However, the number of particles is reduced. The memory requirements and/or the 
input-output costs for particle data stored on disk are consequently lessened. 
Furthermore, as pointed out by Adam et al., [12], in orbit averaging the particle 
advance over the many micro-time steps comprising a full macro-time interval can be 
independently completed for each particle. Economies in computations accrue from 
the large reduction in information retrieval from the string of particle data. 

Mason, Brackbill, and Forslund have been successful in relaxing the ] kv ATI < 1 
constraint on the convergence of the conventional implicit moment method by 
introducing implicitness into the prescription for the stress tensor [ 2,4]. This should 
be helpful in establishing the necessary separation of micro- and macro-time scales 
required for orbit averaging. With kv AC 5 0.2 to accurately resolve the particle orbits 
and kv AT 2 0(l), orbit averaging would be more efficacious. 

Orbit averaging of the direct implicit particle code ought to be successful for 
systems in which the electric fields are weak. The time-step constraint for the direct 
implicit solution is 

kvt, AT = (e#T)“’ kv, AT < 1, 

where vtr s (e#/m)“* is the trapping velocity and vt = (T/m)“’ is the thermal 
velocity. If the electric fields are weak, i.e., if e# < T, then kvt, AT Q kv, AT; and the 
constraint on the field-solution time step is much less stringent than that for accurate 
particle pushing (kv, At < 1). Hence, there arises the necessary separation of time 
scales needed for orbit averaging to be successful. This has been recognized by Adam 
et al., in their discussion of “sub-cycling” [ 121. 

For wave propagation perpendicular to an applied magnetic field, the convergence 
constraint on the implicit moment equations differs considerably from Eq. (41). To 
accommodate a magnetic field, the right side of Eq. (25) acquires the additive term 

(AT/~~c)(J~+“~ + J”-“2) x B”, (44) 

where J”-“* could be the old value of either the instantaneous particle current 
density, the orbit-averaged current density, the fluid current density, or some linear 
combination of these. The v x B force is added similarly to the particle equations of 
motion as in [I] and the companion paper. The implicit solution of Eq. (25) for 
J”“+‘j2 as a linear function of E* is obtained with the standard Boris or Buneman 
method and is stable for arbitrary value of w, AT [8]. 



ORBIT-AVERAGED IMPLICIT CODES 365 

We have performed an analysis of the convergence of a model P+-iteration scheme 
including a magnetic field. The analysis is similar to that which leads to Eqs. (42) 
and (43) but is complicated by the addition of the v x B force in the particle 
equations of motion and the J x B force in the moment equations. The magnetic field 
also adds several new physical time scales, e.g., the cyclotron frequency harmonics, 
the diamagnetic drift frequency, and the VB and curvature drift frequencies, all of 
which influence perpendicular wave propagation. We find that high-frequency waves 
(w > lo,]) can be suppressed with implicit differencing and filtering [e.g., 8 > 0 in 
Eq. (28)]. The stability of the remaining long-wavelength, low frequency electrostatic 
waves is determined by the convergence of iterations on the kinetic stress term, but is 
mediated by implicit differencing similar to the unmagnetized case (see Eq. (43)). 
The precise convergence constraint on AT is model dependent; we find, however, that 
for kl, < 1 and ka < 1 (where 1, G u/or and a = u/w,) the convergence constraint 
can be made much less severe than the time-step constraint on accurate particle 
pushing in the magnetic field ]w, AtI < 1. This separation of time scales At < AT 
creates a more promising situation for orbit averaging than in the unmagnetized case 
with an explicit stress tensor. 

Accuracy considerations should receive more attention than we have given here. 
We have made virtually exclusive use of difference schemes whose electric field 
representation was uncentered and not second-order accurate with respect to time 
step, e.g., Eq. (28) for 19 # 0. This was motivated by the desire for simplicity in both 
the analysis and the presentation; our first priority was given to constructing 
numerically stable schemes. On the whole, our simulation experience with first-order 
schemes and that of Mason [2] have been satisfactory. Difference schemes of higher- 
order accuracy, however, are desirable and can be designed. Cohen et al., [ 111 have 
investigated the accuracy and stability of various implicit schemes in detail. 

It is clear from this study and those reported in [2-51 that the invention of implicit 
algorithms has led to significant gains in the problem of large time steps in particle 
simulations, and large economies in computations have been achieved as a result. In 
some circumstances, smoothing of statistical noise and additional savings in 
computations and/or computer memory requirements can be obtained by the use of 
time-splitting and orbit-averaging techniques in combination with the implicit 
methods as described here. In this last regard, there seems to be room for further 
development. 
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